Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading.
نویسندگان
چکیده
BACKGROUND Studies have shown that the rise in intracellular ionized calcium, [Ca2+]i, in hypoxic myocardium is driven by an increase in sodium, [Na+]i, but the source of Na+ is not known. METHODS AND RESULTS Inhibitors of the voltage-gated Na+ channel were used to investigate the effect of Na+ channel blockade on hypoxic Na+ loading, Na(+)-dependent Ca2+ loading, and reoxygenation hypercontracture in isolated adult rat cardiac myocytes. Single electrically stimulated (0.2 Hz) cells were loaded with either SBFI (to index [Na+]i) or indo-1 (to index [Ca2+]i) and exposed to glucose-free hypoxia (PO2 < 0.02 mm Hg). Both [Na+]i and [Ca2+]i increased during hypoxia when cells became inexcitable following ATP-depletion contracture. The hypoxic rise in [Na+]i and [Ca2+]i was significantly attenuated by 1 mumol/L R 56865. Tetrodotoxin (60 mumol/L), a selective Na(+)-channel blocker, also markedly reduced the rise in [Ca2+]i during hypoxia and reoxygenation. Reoxygenation-induced cellular hypercontracture was reduced from 83% (45 of 54 cells) under control conditions to 12% (4 of 32) in the presence of R 56865 (P < .05). Lidocaine reduced hypercontracture dose dependently with 13% of cells hypercontracting in 100 mumol/L lidocaine, 42% in 50 mumol/L lidocaine, and 93% in 25 mumol/L lidocaine. The Na(+)-H+ exchange blocker, ethylisopropylamiloride (10 mumol/L) was also effective, limiting hypercontracture to 12%. R 56865, lidocaine, and ethylisopropylamiloride were also effective in preventing hypercontracture in normoxic myocytes induced by 75 mumol/L veratridine, an agent that impairs Na+ channel inactivation. Ethylisopropylamiloride prevented the veratridine-induced rise in [Ca2+]i without affecting Na(+)-Ca2+ exchange, suggesting that amiloride derivatives can reduce Ca2+ loading by blocking Na+ entry through Na+ channels, an action that may in part underlie their ability to prevent hypoxic Na+ and Ca2+ loading. CONCLUSIONS Na+ influx through the voltage-gated Na+ channel is an important route of hypoxic Na+ loading, Na(+)-dependent Ca2+ loading, and reoxygenation hypercontracture in isolated rat cardiac myocytes. Importantly, the Na+ channel appears to serve as a route for hypoxic Na+ influx after myocytes become inexcitable.
منابع مشابه
Relation to Blood Pressure and Effects of Calcium Channel Blockade
To study the ionic basis of salt sensitivity in hypertension, Tl_-, 31p-, and 'Na-nuclear magnetic resonance techniques were used to measure cytosolic free calcium (Ca1), pH (pH,), free magnesium (Mg1), and sodium (Na4) in erythrocytes of essential hypertensive subjects (n = 19). Individuals were studied for 2 mo each on low(UNaV < 50 meq/d) and high(UNaV > 200 meq/d) salt diets, with the conco...
متن کاملReversal of Electrocardiographic Sodium Channel Blockade Changes with Bicarbonate Therapy in a Pediatric Patient Post-Cardiopulmonary Arrest Secondary to Methadone Toxicity
متن کامل
Decrease in the transmembrane sodium activity gradient in ferret papillary muscle as a prerequisite to the calcium paradox.
Sodium-dependent calcium exchange may be an important mediator of calcium reperfusion damage during the calcium paradox phenomenon. We measured intracellular sodium activity with ion-selective electrodes during a 15-min period of calcium reperfusion in isolated ferret papillary muscles. During the calcium-free period, alpha Nai increased from 9.0 +/- 0.9 to 18.9 +/- 4.3 mM. With reinstitution o...
متن کاملIntracellular ionic consequences of dietary salt loading in essential hypertension. Relation to blood pressure and effects of calcium channel blockade.
To study the ionic basis of salt sensitivity in hypertension, 19F-, 13P-, and 23Na-nuclear magnetic resonance techniques were used to measure cytosolic free calcium (Cai), pH (pHi), free magnesium (Mgi), and sodium (Nai) in erythrocytes of essential hypertensive subjects (n = 19). Individuals were studied for 2 mo each on low- (UNaV < 50 meq/d) and high- (UNaV > 200 meq/d) salt diets, with the ...
متن کاملSodium influx blockade and hypoxic damage to CA1 pyramidal neurons in rat hippocampal slices.
We studied the effects of lidocaine and tetrodotoxin (TTX) on hypoxic changes in CA1 pyramidal neurons to examine the ionic basis of neuronal damage. Lidocaine (10 and 100 microM) and TTX (6 and 63 nM) delayed and attenuated the hypoxic depolarization and improved recovery of the resting and action potentials after 10 min of hypoxia. Lidocaine (10 and 100 microM) and TTX (63 nM) reduced the num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 90 1 شماره
صفحات -
تاریخ انتشار 1994